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Abstract 

A dimensional analysis is reported of interstitial phases 
with the hexagonal A1CrzC, NM2C, structure, which is 
based on examining the variation of the unit-cell 
parameters a and c as functions of D u and D N, the 
diameters of the M and N components for CN 12. The 
observed behaviour is uniquely different to that of 
phases with all other structures so examined, there 
being a drastic change of the D N dependences of a and 
e in the region where a ~ D N. Nevertheless, equations 
are derived which reproduce the a and ¢ dependences 
on D M, D N and the valency of the M component to 
better than 0.5 % and which indicate the atomic arrays 
that control the cell dimensions. It is found that the 
M - - M  distances that do not lie in (0001) planes and 
which form half of the sides of the M octahedra 
surrounding the metalloid atoms, are an invariant 
feature of the structure for phases with the same M 
component. This invariant distance couples a, e and z, 
the atomic parameters of the M atoms, and it causes e 
dependences on 6.5D N (a > D N) and - 1 . 6 5 D  N (a < 
DN), which could not possibly arise through the 
intrinsic contacts of the N atoms. The electronic 
distribution from the M atoms to M - M  and M - N  
contacts and also to bands derived from the metalloid 
2p states and transition-metal d states, is further 
analysed to account for the apparent dependence of a 
and e on the M-atom valency. The cell dimensions of 
SnM2C phases with the A1Cr2C structure do not follow 
the systematic variations discussed above; reasons are 
advanced for this. 

1. Introduction 

True binary interstitial phases of the Hiigg (1929, 
1931) type can be referred to as those with the ratio of 
the radius of the metalloid to the radius of the transition 
metal, RN/R u, less than about 0.59. In their struc- 
tures, the transition-metal atoms generally form a 
primitive or face-centred cubic lattice, or a simple 
hexagonal lattice, with the metalloid atoms occupying 
the centres of tetrahedra, octahedra or trigonal prisms 
in such lattices. Ternary phases satisfying the same 
radius ratio with metalloid atoms at the centres of 
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similar polyhedra can also be regarded as true H~igg 
interstitial phases. One of the main features in the 
stability of such phases appears to be that the d levels 
of the transition-metal atoms overlap forming d bands. 
Interaction of the metalloid p orbitals with these d 
bands appears to be responsible for the particular 
physical properties of interstitial carbides and nitrides. 
Recent band-structure calculations, for example those 
of Neckel et al. (1976), confirm overlap of bands 
derived from the transition-metal 3d and metalloid 2p 
states in interstitial carbides and nitrides with the 
rock-salt structure. 

A recently developed method of dimensional analysis 
of binary metallic phases (Pearson, 1979a,b)permits 
quantitative assessment of the dimensional changes in 
series of interstitial phases with a given structure, and 
particular interest attaches to non-cubic structures 
containing metalloids at the centres of transition-metal 
octahedra, which then become deformable in more than 
one mode. In the analyses, the unit-cell dimensions of 
phases, MxNy, with a given structure and the same N 
component, are examined as a function of D M and of 
D N at a constant D u value, the atomic diameters being 
taken for coordination number (CN)12. In practically 
all cases, linear relationships are found between the cell 
dimensions and D M or D N. The analyses depend on 
assuming the validity of Pauling's (1947) equation, 
R(1) -- R(n) = 0.30 log n, where n equals the atomic 
valency divided by the coordination number. With this 
assumption, it does not matter what the actual 
coordination numbers of the atoms in the structure 
examined are, since a change of diameter from CN 12 
only results in the addition or subtraction of a constant 
term to the equations relating the cell dimensions and 
D M or D N for CN 12. The linear relationships between 
cell dimensions and D M or DN can be explicitly 
interpreted in terms of the atomic arrays that control 
the cell dimensions in the structure. Such explicit 
interpretation is rarely possible for relationships derived 
in terms of the conventional radius ratio, RM/R N, 
because of the properties of ratios. 

The method of analysis also requires that two other 
conditions be satisfied ~(Pearson, 1980): (i) the valency 
and/or number of bonding orbitals on an atom in the 
structure examined must be the same as in its elemental 
structure from which its CN 12 diameter was derived; 
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(ii) The distribution of the valence electrons from an 
atom to its surrounding neighbours must be in 
accord with the distances to these neighbours and 
Pauling's equation, referred to above. If either of these 
conditions is not satisfied, a 'valency effect' may be 
apparent in plots of cell dimensions versus D M or D N if 
the appropriate atomic arrays control the cell dimen- 
sions. That is to say, instead of all phases with a given 
structure and N component lying on a single line of a 
versus D M, phases with M components of valency 1, 2, 
3, ... will lie on a series of separate parallel lines. This is 
but an artefact of the method of analysis, and it does 
not invalidate the analyses; indeed, on the few 
occasions where valency effects have been observed, 
they could be quantitatively interpreted in terms of the 
valency states of the atoms existing in the alloys 
(Pearson, 1980). 

In this paper the analysis is applied to phases with 
the hexagonal A1Cr2C or H-phase structure, NM2C 
(Jeitschko, Nowotny & Benesovsky, 1963), which 
show a different dimensional behaviour to that nor- 
mally observed. Although these are ternary phases, the 
analysis can be extended to them, when the third 
component, there carbon, is the same for all phases, 
provided that any extra conditions that the third 
element introduces are taken into account. 

The arrangement of the atoms in the A1Cr2C 
structure is shown in Fig. 1. There are triangular 
networks of Cr atoms in (0001) planes located about 0 
+ z and ½ + z, where z is the parameter of the Cr atoms 
along c. These layers create bands in (0001) planes of 
octahedra which share edges. Between these bands of 

q 

q 

q 

Fig. 1. Diagramatic view of the A1Cr2C structure. Large circles A1; 
small circles Cr, filled circles C atoms. Two octahedra and two 
uncentred trigonal prisms are indicated. 

octahedra, the Cr layers also create bands of con- 
tiguous trigonal prisms, alternate prisms being centred 
by A1 atoms at fixed heights ofz = +I- With the C or N 
atoms centering the octahedra of transition-metal 
atoms, phases with the AICr2C structure can be 
regarded as true HS.gg interstitial phases. 

The only variable parameters of the A1Cr2C struc- 
ture are the axial ratio of the unit cell and the z 
parameter of the M atoms, allowing their movement 
along [0001]. Unfortunately, accurate z values have 
been determined for very few phases. As the M and N 

_+(~,~), atoms have fixed x and y positions at 12 
constraining interatomic contacts in the (0001) plane 
are likely to be directly reflected by changes of the cell 
dimensions. 

There are five arrays of interatomic contacts that 
may be important in accounting for the variations of a 
and c with D M and D N. The distances between the N 
atom at the centre of the trigonal prisms and the six M 
atoms in their corners are close to the appropriate 
radius sum. The M and N atoms in their triangular 
networks on (0001) planes may severally come into 
contact when a < D M or a ___ D N. The condition a < D N 
is satisfied for all phases to the right of the broken line 
in Fig. 4. The condition a < D M would be satisfied for 
the Sn phases of Zr and HI', if their lattice parameters 
adhered to the systematic variation with D N of other 
phases with the A1CrzC structure, but they do not. Six 
of the M - M  edges of the transition-metal octahedra 
form triangles in the (0001) planes and thus have a 
length a. The other six M - M  edges join the corners of 
these two triangles, and therefore will generally have a 
length different from a. The length of these edges, 
which we shall refer to as M - M  (4:a), involves the z 
parameter and hence could also exercise control of the 
cell dimensions. Finally, the M - C - M  distances along 
the diagonals of the octahedra are considerably shorter 
than the appropriate radius sums. These distances do 
not appear explicitly in the dimensional analysis 
because the ternary phases are treated as binary 
phases, NM2, but the information must be included in 
all considerations. 

Unit-cell dimensions of phases with the A1Cr2C 
structure are taken from Pearson (1967) or later 
volumes of Structure Reports of the International 
Union of Crystallography. Diameters of the atoms for 
CN 12 are those of Teatum, Gschneidner & Waber 
(1960). 

2. Dependence of  unit-cell dimensions of  AICr2C 
phases on D u and D~v 

Figs. 2 and 3 show a and c as functions of D M for 
carbide phases with the AICr2C structure and the same 
N component, and Fig. 4 shows a and c as functions of 
D N for carbide phases with the same M component. 
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The broken line in Fig. 4 separates the region where 
a > D N, on the left, from that where a < D N, on the 
right. Figs. 2 and 3 indicate a valency effect in respect 
of the M atoms, which is an artefact of the method of 
analysis as discussed in § 1. 

The data shown in Figs. 2, 3 and 4 can be 
represented by the following equations. 

When a > D N 

a = 0 . 7 0 D  M -  0 . 6 5 D  N + 0 .019S + 2.814, (1) 

c = 3 .0D M + 6 .5D N + 0 .072S - 13.870. (2) 

When a < D N 

a = 0 .70D u + 0 . 2 5 D  N + 0 .019S + 0.254, (3) 

c - -  3 .0D M - 1.65D N + 0 .072S + 10.740, (4) 

where S represents the valency effect and has values of 
1, 4 and 6 for Group IV, V and VI M components 
respectively. The values of S are selected to make the 
valency effect zero for the Group IV metals, as 
demonstrated in § 4. Equation (3) is obtained by 
adding 0 .9D N -- 2 .560 to (1) and (4) is obtained by 
adding - 8 - 1 5 D  N + 24.610 to (2). 

With the exception of the c values for the sulphur 
phases, these equations reproduce the a parameters of 
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Fig. 2. Variation of a as a function of D~t for carbide phases with 
the A1Cr2C, NM2C, structure and N components revealed by the 
symbols: + Ge; • Pb; a Sn; [] In; V Ga; 0 S; x TI; O AI, and 
identified on the various scales. A valency effect is apparent for 
transition metals of valency 4, 5 and 6. 

the 28 known carbide phases that do not have Sn as the 
N component, to within 10-0151 fi, (or 0 .5%) of the 
observed values, and the c values to within 10-0331 
(or 0 .25%) of the observed values, as shown in Table 
1. The calculated c values of the three S phases differ 
by 0.20 to 0.29 /k from the observed values. The 
reason for this slight disagreement is understood and 
discussed in § 4. 

3. Explanation of the dimensional behaviour of phases 
with the AICr2C structure 

Having accounted analytically for the observed dimen- 
sional behaviour, we must now explain its occurrence. 
In particular, we must account for: (i) the dramatic 
change of slope of a and c as functions of D N in the 
region where a equals DN; (ii) both the very high 
dependence of c on 6 .5D N and the negative depen- 
dence on --1-65DN; (iii) the behaviour of the Sn phases 
which do not adhere to either of the systematic 
behaviour patterns of a and c versus D N. 

Accounting for the observed dependence of a on 
0 . 7 D  M and c on 3 .0D M (Figs. 2 and 3) presents no 
problems. Since the M - M  separation in (0001) planes 
is always greater than D M, the zig-zag arrays of atoms 
- M - N - M - M - N - M - ,  possibly with M - C - M  replacing 
M - M ,  which run throughout the structure must be 
responsible for both dependences. Thus, in the a 

2,5 2.6 27 28 292153-02163,1 32 J 33 34 35 At, Ge 
~7 z. 2'~ ~ : o , ~ , , ~ ,  ' • 3.3 GO, In, Tlo S 

DM(~) 29 30 31 3.2Sn, Pb 

Fig. 3. Variation of c as a function of DM; other comments are the 
same as in the caption to Fig. 2. 
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direction one M atom diameter is involved and in the c 
direction four M atom diameters are involved. 
Estimations of the resolved components of these 
proportionalities along a and c indicate that the 
observed a dependence on 0 .7D M and c dependence on 
3.0D M are very much to be expected on the basis that 
these arrays of atoms exercise dimensional control. The 
valency effect involving transition-metal M components 
of valency 4, 5 and 6 (Figs. 2 and 3) will be considered 
in {}4. 

The change of dependence of a and c on D N, which 
occurs in the region where a = D N, results from the 
N - N  distance (equal to a) in the triangular nets of N 
atoms in (0001) planes beginning to take control of the 
a dimension of the cell. This is apparent from the 
limiting slope of a versus D N approaching 1.0 as D N 
increases (Fig. 4), and from the required addition of 
0 .9D N to (1) to produce (3) which applies when a < 

O N . 
The large dependence of c on 6 .5D N cannot arise 

directly from contacts with the N atoms. The only 
contacts with resolved components in the [0001] 
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Fig. 4. Variation of a and c as a function of D N for carbide phases 
with the AICr2C, NM2C, structure. M components are revealed 
by the symbols: + Cr; V V; ~? Mo; 0 Ti; [] Ta;/x Nb; x Hf; • 
Zr. The broken line in the right-hand diagram represents a = D N. 

direction which involve the N atoms are the N - M  
contacts in the trigonal prisms. These would only be 
expected to contribute a c dependence of 2 .0D N at the 
most. Therefore, the large dependence of c on D N must 
result from a simultaneous dimensional adjustment in 
the structure which does not arise directly from the N 
atoms themselves. 

Since there are very few phases with the A1Cr2C 
structure whose z parameters have been determined 
accurately, if at all, we tried to explain the observed 
dimensional dependences on D N on the basis of the 
unit-cell dimensions alone. Although it was possible to 
account quantitatively for the dependence of c on 
6 .5D N on this basis, it was not possible to obtain a 
driving mechanism whereby this dimensional behaviour 
would occur rather than the normal dependence on D N, 
which would arise from direct contacts with the N 
atoms. It was therefore necessary to try to establish the 
variation of the z parameters of the M atoms with 
change of the N component,  and the eight NTi2C alloys 
were chosen as the most promising. 

Of  these NTi2C phases, z values have been deter- 
mined for the Ge, In and Pb phases from X-ray powder 
photographs, and a value of 0.099 + 2 has been 
obtained for STi2C from single-crystal X-ray 

Table 1. Observed and calculated lattice parameters 
ofA1Cr2C structure phases, NM2C 

a o b s  acalc - -  a o b  s Cobs Ccalc - -  Cob s 

> DN 
STi2C 3.210 0.019 11.20 0.28 
GeTi2C 3-079 0.021 12.93 -0.16 
GaTi2C 3.064 -0-018 13.305 0.012 
AITi2C 3.04 -0.022 13-60 -0.01 
SHf2C* ~3-365 0.029 ~ 11.99 0.20 
SZr2C 3.396 0-029 12.121 0.21 
GeV2C 3.001 -0.007 12.25 0.04 
GaV2C 2.938 0.002 12.84 0 
AIV2C 2.913 -0.001 13.14 -0.03 
GaNb2C 3.131 -0.020 13-565 0.004 
AINb2C 3-103 -0.020 13.83 0.01 
GaTa2C 3-104 0.006 13.57 -0.01 
A1Ta2C 3.075 0.007 13.83 0.01 
GeCr2C 2.954 -0.011 12.08 -0-03 
GaCr2C 2-886 0.003 12.61 -0.01 
AICr2C 2.860 0-001 12.82 0.05 
GaMo2C 3.017 0-037 13.18 +0.13 

< DN 
CdTi2C 3.099 0.005 14.41 0 
InTi2C 3-132 0.020 14.06 0.036 
T1Ti2C 3-158 0.020 13.98 --0-059 
PbTi2C 3.209 -0.014 13.81 -0.001 
InZr2C 3.347 0.001 14.91 0.026 
T1Zr2C 3.363 0-011 14.79 0.029 
PbZr2C 3.384 0.007 14.67 -0.021 
InHf2V 3.307 0.010 14.73 0.074 
TIHf2C 3.322 0.021 14.63 -0.001 
PbHf2C 3-358 0.002 14.47 0.047 
InNb2C 3-172 0-045 14.37 -0.02 

* Actually FeHf2SC 2. 
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photographs. These data, and an assumed value of z = 
0.086 for AITi2C (the same as that accurately 
determined for A1CrzC), are shown as functions of D N 
in Fig. 5, together with the resulting calculated M - M  
(4: a) and M - C - M  distances. It seems that the relative 
self-consistency of the data can be greatly improved by 
changing z for GeTi2C to 0.089 and possibly changing z 
for PbTi2C to 0.082 - changes that appear well within 
the expected precision of the data. 

There is now a smooth variation of the data in Fig. 5. 
z decreases monotonically with increasing DN, prob- 
ably attaining a constant value in the region where a < 
D N. The M - M  ( ¢  a) distances remain essentially 
constant and equal to DTI = 2.294 A CN 12, regardless 
of changes of z and D N. The M - C - M  distances 
probably go through a minimum value in the region 
where a = D N, and are greatly compressed compared 
t o  ½(Dwi + Dc). 

There is little doubt from the data of Fig. 5 that the 
M - M  (4=a) distance is an invariant parameter of the 
A1Cr2C structure. Therefore, when the interstitial 
octahedra are distorted it is at the expense of the M - M  
distance in (0001) planes and/or of the M - C - M  
lengths of the diagonals of the octahedra. Since the 
M - M  (4=a) distance is given by d = (aV3 + 4z 2 cZ) m, 
it is seen that a change in the length of c, for example, 
must be compensated for by changes in a and/or z in 
order to keep d constant. Thus, for NTi2C phases, a 
change from DN= 2.96 ,& in the region where a = D  N and 
(1) and (2) give a = D N = 2-96 and c = 14.214 A 
t o  D N = 2-54 A of the STi2C phase must be 
accompanied by a decrease in c, since z increases to 

0-099 and a changes little. Indeed, putting the observed 
values of d = 2.89, a = 3-21 A and z = 0.099 for the 
STi2C phase into the above expression for d, we must 
get the observed value of 11.20 A for e, thus 
accounting quantitatively for the e dependence on 
6.5DN; it still does not explain why normal a and c 
dependences on D N are not realized at the expense of z, 
while still maintaining the invariant M - M  distances. 
This requires consideration also of M - N  distances and 
unit-cell volumes. The M - N  distances are also impor- 
tant in controlling the cell dimensions and these involve 
a, e and z, the latter being in a (¼ - z) relationship, so 
that the effect of changing z is the opposite on M - - N  
distances to that on M - M  distances. Although the 
M - N  distance changes appreciably with z, it varies 
relatively little as a and c (coupled) change widely at a 
constant z and M - M  distance. For example, as e 
changes from 12 to 14 A at z = 0.086, the rate of 
change of a is 28 and e 80 times greater than the rate of 
change of the M - N  distance. These facts introduce the 
situation illustrated in Fig. 6 for the GaTi2C phase 
(assumed z = 0.087), which shows that although z is 
prescribed within fairly narrow limits, a and e can vary 
widely while still maintaining an invariant M - M  
distance and an acceptable M - N  distance. However, in 
so doing the unit-cell volume also varies widely as Fig. 
6 shows. Therefore, if the M - M  and M - N  distances 
have suitable values, it is ultimately the unit-cell volume 
which prescribes the acceptable a and c values. 

Thus, the invariant M - M  distance in coupling 
together a, e and z is primarily responsible for the 
dependence of c on D m which is far greater than that 
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Fig. 5. NTi2C phases with the AICr2C structure. The z parameter 
of the M atoms and the calculated M - M  (--/: a) and M - C - M  
distances versus D N. 0 represents data of experimentally 
determined z values, x represents data of adjusted z values. 
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Fig. 6. Observed (A) and calculated (+,x)  M - N  distances of 
NTi2C phases as a function of D N. Observed distances are based 
on z values of 0.099, 0.089, 0.087, 0.086, 0.835, 0.080, 0.082, 
0.082 and 0.082 for N components S, Ge, Ga, AI, Sn, Cd, In, T1 
and Pb respectively. Calculated values are ½(D M + D^,) with D M 
for CN 9 and D~. for CN 6 except for Cd, In, TI and Pb where D x 
is for CN 12. The DN value for S v~ is used. 
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which could arise intrinsically from contacts between 
the N atoms and their neighbours, and for the slight 
decrease of a with increasing D N. Thereafter, it 
maintains suitable M - N  distances, which also couple a, 
c and z, the latter in a (¼ - z) relationship, and a 
suitable unit-cell volume, which couples a and e, to 
provide the driving force which results in the relation- 
ships observed. There is no reason why a cannot 
decrease with increasing D N in this region, as both the 
N - N  and M - M  distances in the triangular networks of 
N and M atoms in (0001) planes are greater than D N 
and D M respectively. 

In the region where a < D N, the triangular networks 
of N atoms in (0001) planes in part control a, as the 
N - N  distance is equal to a. z values appear to vary 
little, becoming constant at a value close to 0-082. As 
the M - - M  (4:a) distance remains the invariant feature of 
the structure, equal in length to Da-i, an increase of a 
with D N causes a decrease in c as z is constant. The 
observed value of a for PbTi2C at D N = 3.50 A is 
3.209 A. Taking 2.925 ,~ as the M - M  (:¢: a) distance 
and z = 0.082, we find that the calculated value o f c  is 
given by 

2.9252 = 3.2092/3 + 4 × 0.0822 c 2, 

whence c = 13.80 ,~,, which agrees, as it must, with the 
observed value of 13-81 ,~,. Thus, the dependence of c 
on - 1 - 6 5  D N in this region is quantitatively accounted 
for and arises from the constant value of the M - M  
(~a) distance which couples the a, c and z values, 
together with the maintenance of an equitable unit-cell 
volume for the phases. 

The a parameters of the SnM2C phases are too large 
and their c parameters are too small to follow the 
regular a and c dependence on D N of other phases, 
although their cell volumes as a function of D M or D N 
appear to vary regularly with those of other phases. 
This does not seem to result from the phases lying in 
the region where a = D N. Rather~ it is because the 
distance a between the M atoms of the triangular 
networks on (0001) planes would be less than D M for 
the Zr and Hf  phases, and about equal to it for the Nb 
and Ti phases, if they followed the a and c dependences 
on D N of the other phases. Thus, the expansion of a 
for the SnM2C phases avoids the additional constraint 
on the M atoms in (0001) planes. The concomitant 
contraction of e maintains the systematic variation of 
cell volumes of the phases, there being no special 
reason to prevent a decrease of e when a increases. 
In no known phases, other than those of Sn, does the 
condition of a being smaller than D u arise. 

It is interesting to note that, if the condition that 
M - M  (4: a) is constant and equal to 2.925 A holds for 
the SnTiEC phase, the value of z calculated from the 
observed a and c values and 2 .925 /k  is 0.0835, which 
is exactly the value predicted for D N = 3.09 A in Fig. 5. 

Finally, the few nitride phases with the A1Cr2C 
structure appear to behave similarly to the carbides. 

4. Observed valency effects 

In the region where a > D N, the M atoms each have 3 
M, 3 N and 3 C contacts giving CN 9, and the N atoms 
have 6 M contacts for CN 6. Since the three M - M  
contacts [not in (0001) planes] are an invariant feature 
of the structure, the - -M--N- -M--M--N- -M--  arrays 
effectively control the cell dimensions. The M - C  inter- 
stitial contacts within the octahedra, and the number of 
M electrons assigned to them, are initially assumed to 
have virtually no influence on the cell dimensions. 

(i) Sulphur in SM2C phases 

It is apparent from Fig. 7, which shows, as a 
function of D N, M - N  distances in NTizC phases, 
together with ½(D N + Da.i) values with D u for CN 6 and 
Da- ~ for CN 9, that sulphur exhibits a valency effect. In 
SM2C phases its diameter corresponds to S vl (2 .26 /k  
for CN 12) which uses six bonding electrons, whereas 
the elemental D~t value for CN 12 which we have used 
is based on S n with two bonding electrons. The effect is, 
however, scarcely apparent in Fig. 4 where a and c are 
plotted against D u for CN 12, since neither a nor e are 
intrinsically dependent on the size of the N atom itself, 
as shown in § 3. Calculated e values based on D s = 
2.54 A are slightly different from the observed values, 
as noted in § 2. Indeed, if D s = 2.51/k,  the discrepancy 
of the c parameters is removed without spoiling the 
agreement of the a parameters. 
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Fig. 7. Thin lines show values of a versus c for NTi2C phases, 
giving a constant M - M  (4: a) distance of 2.924/k for constant z 
values; V 0.085; & 0.086: O 0.087: × 0.088; + 0.089. The 
thick broken line indicates a and e values that satisfy conditions 
of constant M - M  (4:) = 2.924 and constant M - N  = 2.800 A 
(calculated for the GaTi2C phase with z = 0.087). Numbers 
ranging from 2.859 to 2.889 indicate variation of the M - N  
distance with a and e for a constant M - M  (--/: a) distance of 
2.924/k and a constant z of 0.085. The numbers at the top of the 
diagram which range from 126.6 to 71.1 indicate the unit-cell 
volume (/~3) for e values of 12, 13, 14 and 15 /k, and for the 
GaTi2C phase. 
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(ii) The transition metals, M, in A1Cr2C phases 

The obvious explanation of a valency effect that is 
greatest for transition metals of lowest valency, as 
arising from transference of electrons from the inter- 
stitial metalloid atoms to the transition metals, is quite 
untenable in view of the relative electronegativity values 
and because of known energy-band structures of 
interstitial carbides and nitrides with the rock-salt 
structure (cf. Neckel et aI., 1976). The valency effect 
can nevertheless be explained quantitatively on the 
basis of the number of electrons required to account for 
the distances between the atoms in the - M - N -  
M - M - N - M -  arrays which control the cell dimensions, 
calculated on the basis of Pauling's (1947) equation 
R(1) -R(n)  = 0.3 log n. It is therefore assumed initially 
that the invariant M - M  distance in this array, rather 
than the alternate M - C - M  path, is dimension con- 
trolling, so that the number of M electrons involved in 
M--C contacts or transferred to bands derived from 
the metalloid 2p states is unimportant. A second 
assumption, since the N atoms have only the six M 
neighbours in the region where a > D N, is that the 
average difference in the M - N  distances from ½(D M + 
DN) with D M for CN 9 and D N for CN 6 (see e.g. Fig. 
7), is to be attributed wholly to the number of electrons 
provided by the M atoms. 

The results of these simple calculations for the four 
N T i 2 C  , three N V 2 C  and three N C r 2 C  phases in the 
region where a > D N are summarized in Table 2. The 

same z values are assumed for the V and Cr phases as 
for the corresponding Ti phases. 

The calculated differences of CN 12 diameters in the 
NM2C phases compared to the elemental structures, 
+0-004, +0.076 and +0. 125 A for the Ti, V and Cr 
phases respectively, indicate that in Figs. 2 and 3 the 
lines of a and c versus D M for V and Cr phases should 
lie respectively at 0.072 and 0.121 ,~ lower D M values 
than the lines for Ti phases. The average observed 
values in Figs. 2 and 3 are respectively 0-070 and 
0.115 .A for the A1 and Ga phases of these three M 
components. Similar calculations comparing Zr and Hf  
phases with Nb and Ta phases, although involving 
different electron numbers, give the same result that the 
Group V metal phases should lie 0.073 ,/~ to lower D M 
values than the Group IV metal phases. 

In the region where a < D N, there is only the InNb2C 
phase that can be compared with the NTi2C phases. 
However, the valency effect appears to be no different 
from that in the region where a > D N, even though now 
the CN of the N atoms should be considered as 12 due 
to the six N - N  interactions in the (0001) plane. 

Fig. 8 confirms that the calculated electron distri- 
butions for the Ti, V and Cr phases are indeed sensible, 
since the number of transition-metal electrons assigned 
to carbon p bands and non-bonding in d bands 
extrapolates to zero for a hypothetical M component of 
valency two, which has no d electrons. Furthermore, 
the numbers of electrons assigned to the three M - M  
and three M - N  contacts extrapolate to values that add 

Table 2. Results o f  calculations performed in the 
region a > D N 

Ti phases V phases Cr phases 

Average observed M-M (--/=a) 0.077 0.186 0.262 
distance minus DMfor CN 9 (/~) (all phases) 

Calculated number of electrons 0.992 
used in 3 M - M  bonds 

Average of observed M - N  0.041 
distances minus ½(D~ + DN), 
D M for CN 9, D N for CN 6 (A) 

Calculated number of electrons 0.973 
used in 3 M - N  bonds 

Total number of electrons used 1.965 
for 3 M - M  and 3 M - N  bonds 

Number of electrons for carbonp 2.035 
bands, and non-bonding, per M 
atom 

Average electrons per bond for 
3 M-M and 3 M-N bonds in 
NM2C phases 

Number of electrons per bond in 4/12 
CN 12 element = 0.333 

Number of electrons per bond in -0.005 
NM2C phases minus that for 
CN 12 element 

Corresponding difference in 
CN 12 Dm for NM2C phases to 
CN 12 D M for the elements (A) 

0.816 0.732 

0.060 0.075 

1.052 1.125 

1.868 1.857 

3.132 4.143 

1.965/6 1.868/6 1.857/6 
=0 .328  =0.311 =0 .310  

5/12 6/12 
=0 .417  =0 .500  

-0 .106  -0 .190  

+0.004 +0.076 +0.125 

I 
/ 1 I I I 

NO. OF 

2 :5 4 5 6 

V A L E N C Y  OF M A T O M  

Fig. 8. Calculated average number of valency electrons involved in 
three M - M  bonds (7), three M - N  bonds (A) and transferred to 
carbon 2p bands or in non-bonding d bands (O) versus M-atom 
valency for NTi2C, NV2C and NCr2C phases in the region where 
a > D  N. 
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up to two electrons for an M component of valency 
two. 

Thus the valency effect is shown to be the result of 
the arrays of atoms that control the cell dimensions 
- M - N - M - M - N - M -  , using the numbers of valency 
electrons in their bonding that are commensurate with 
the distances between the atoms according to the 
Pauling equation. Furthermore, the reason for the 
valency effect being essentially zero for the Group IV 
M components, Ti, Zr and Hf, is that, in giving 
approximately two electrons per atom to the carbon p 
bands (assuming little overlap of these and the 
transition metal d bands), there are approximately two 
electrons left for the six M - M  and M - N  bonds that 
control the cell dimensions. This is the same ratio of 
electrons per bond as in the elemental structures from 
which D~ for CN 12 is calculated. Hence, Du for CN 
12 is the same in Ti, Zr and Hf phases with the A1Cr2C 
structure as in their elemental structures. By the same 
token, since for A1Cr2C phases of Group V and V I M  
components, some electrons are assigned to non- 
bonding d states, there are less electrons per bond 
controlling the cell dimensions; hence D u for CN 12 is 
greater in these phases with the AICr2C structure than 
in the elemental structures from which the D u values 
for CN 12 were determined and so the valency effects 
are observed. These results account in the main for the 
data in Figs. 2, 3 and 4, although the lattice parameters 
of a few phases such as GaMo2C place them not quite 
in the right positions. 

5. Discussion 

In ternary interstitial phases with cubic structures, such 
as the perovskites, NTi3C, the octahedra of Ti atoms 
surrounding the carbon atoms are regular and their 
edges, which equal a/v /2 ,  must expand as the cell edge 
expands. In contrast, the ternary hexagonal interstitial 
compounds with the A1Cr2C and SiTi3C 2 (Jeitschko & 
Nowotny, 1967) structures each have two degrees of 
freedom: the axial ratio c/a, and a z parameter allowing 
movement of the transition-metal atoms along the 
[0001 ] direction. As the relative sizes of the M and N 
atoms change in different phases, these two degrees of 
freedom could, for example, allow the octahedra to 
remain regular (condition zcv /6  = a for the AICr2C 
structure), allow their diagonals to maintain a fixed 
length equal to (D M + Dc) , or allow the M - M  edges of 
the octahedra that do not lie in (0001) planes to 
maintain some fixed length. 

That the octahedral edges M - M  which do not lie in 
(0001) planes have a fixed length, essentially equal to 
Dx~ = 2.924 A in NTi2C phases, is significant, since the 
M - M  edges of the octahedra that lie in (0001) planes 
cannot have a fixed length of D~,, unless a is constant 
and equal to D M in all phases, which is not the case. 

Thus, the M - M  (4= a) distances which vary between 
about 2.89 and 2.97/k for NTi2C phases (compared to 
interatomic distances of 2.89 and 2.95 A in elemental 
hexagonal Ti) are responsible for maintaining the Ti d 
bands in these phases. That the transition-metal d 
bands are an important feature in the stability of the 
structures of Hiigg interstitial phases has long seemed 
obvious, but here is a demonstration of it under 
conditions where the variable parameters of the 
hexagonal structure would have allowed almost any 
variation of interatomic distances. This condition that 
controls the cell dimensions is the only one which in all 
NTi2C phases would maintain three-dimensional d 
bands between the Ti atoms within the layers of 
octahedra. Much the same situation occurs in the 
SiTi3C 2 structure where the Ti-Ti distances that do not 
lie in (0001) planes are 2.971 ]~ and those that lie in 
(0001) planes are 3-068/k. 

A1Cr2C phases with M components Ti, Zr, Hf, Nb 
and Ta are all true H/igg interstitial phases with R c / R  M 
< 0.59, and the invariant M - M  distances are equal to 
the elemental D M values for CN 12 for the Ti, Zr and 
Hf phases and average just slightly larger (0.038 A) for 
the Nb and Ta phases. However, for the V and Cr 
phases the M - M  distances are distinctly larger (respec- 
tively 0-111 and 0.187/k),  but these are no longer true 
Hiigg interstitial phases since for them R c / R  u > 0.59. 
Thus it appears that the diameter of the carbon atom 
influences the invariant M - M  distances through the 
M - C - M  octahedron diagonals. Whether d bands are 
still formed between the transition-metal atoms under 
these conditions is uncertain. 

Finally, there appear to be no reports of A1Cr2C 
phases with an M component of valency three. Two 
possibilities therefore exist: either such phases cannot 
be stable, because, with approximately two electrons 
per M atom relegated to bands derived from carbon 2p 
states, the remaining electron per M atom is insufficient 
for the six M - M  and M - N  contacts to give a stable 
structure, or they have been insufficiently sought and 
when a phase is found its lattice parameters will be 
accurately given by (1) to (4) with a value of S = - 2 ,  
there being approximately two electrons per M atom 
assigned to the M - M  and M - N  contacts. 

6. Summary 

(1) The study shows that it is possible to derive 
analytical expressions based on CN 12 atomic 
diameters which reproduce closely complex observed 
lattice-parameter variations in a series of phases with a 
given crystal structure - regardless of the actual 
coordination of the atoms in the structure, and 
regardless of the fact that the CN 12 diameters of 
atoms in the structure may differ from those in the 
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elemental structures from which standard CN 12 
diameters are derived! 

(2) It shows that an invariant parameter in a uniaxial 
crystal structure may couple the variable parameters of 
the structure, so as to produce apparent dependences of 
the cell edges on the diameter of a component atom, 
which could not possibly arise intrinsically through the 
direct contacts of the atom with its neighbours. 

(3) The observed variations of the cell dimensions of 
phases with the A1Cr2C structure lead to some 
interesting observations on the nature of the electronic 
interactions in true interstitial phases. Hopefully, these 
may stimulate band-structure calculations to confirm 
or reject the reliability of such analyses. 

This work was supported by a grant from the 
Natural  Sciences and Engineering Research Council of 
Canada.  
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Abstract 

A simple method is given for deriving the triclinic-cell 
parameters from three general reflections by vertical or 
horizontal measurements on upper-level films. 

Introduction 

The problem of obtaining, with a Weissenberg camera, all 
unit-cell parameters from one crystal setting has been studied 
by different authors. In most methods, measurements on an 
upper-level photograph serve to determine the origin shift of 
this level relative to the true origin. Then, two direct angles 
can be calculated and the cell is completely defined, the four 
other cell parameters being provided by the oscillation and 
the zero-level photographs. Buerger (1942, pp. 377ff.) pro- 
posed a method of angular lag which requires the recording 
of both the zero and an upper level on the same film, and 
involves measurements of low-angle axial reflections. 
Hulme's (1966) method, easier and more accurate, enables 

0567-7394/80/040732-03501.00 

one to determine the unknown angles from measurements of 
the angular distance between general reflections, either 
graphically or by iteration. More recently, Hebert (1978)has 
described a procedure for deriving these angles from 
measurements of distances between festoons representing 
either axes or r.1. lines parallel to the axes. A method, quite 
different from these, has also been reported by Alcock & 
Sheldrick (1967) where all reciprocal-cell parameters are 
calculated from the separations of the a~-a 2 doublets and 
refined by least squares. In the following method, vertical or 
horizontal measurements involving three general reflections 
lead to an easy determination of the remaining reciprocal-cell 
parameters. These are accurate enough for preliminary work 
and may be refined later with a diffractometer. 

Vertical measurements 

Let us consider (Fig. 1) a crystal rotated about c. The r.1. 
point P has two components, ~ parallel to the rotation axis 
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